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Abstract. The paper discusses the problem of ranking research projects based on the1

assessment obtained from two or several independent reviewers. Each reviewer assesses2

several project features, and the total score is defined as the weighted arithmetic mean,3

where the weights of features are determined according to the well-known AHP method.4

In this way, it is possible to identify each project by a point in n-dimensional space. The5

ranking is performed on the basis of the distance of each project to the perfectly assessed6

project. Thereby the application of different metric functions is analyzed. We believe7

it is inappropriate to use a larger number of decimal places if two projects are almost8

equidistant (according to some distance function) to the perfectly assessed project. In9

that case, it would be more appropriate to give priority to the project with more balanced10

assessments obtained from different reviewers, which is achieved by combining different11

distance functions. The method is illustrated by several simple examples and applied by12

ranking internal research projects at Josip Juraj Strossmayer University of Osijek.13

Keywords: Multi-criteria decision making; Project evaluation; ℓp-distance; AHP14

1 Introduction15

The problem of ranking research projects (see e.g. Collan et al. (2013); Mandic et al.16

(2014); Mardani et al. (2015); Ž. Turkalj et al. (2016)) as well as ranking departments,17

institutes and universities (see e.g. Daraio et al. (2015); Kadziński and Słowiński (2015);18

Rad et al. (2011)) has long been present in the scientific literature. Most approaches19

1Corresponding author: Rudolf Scitovski, e-mail: scitowsk@mathos.hr, telephone number: ++385-
31-224-800, fax number: ++385-31-224-801
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use different multi-criteria decision-making methods, but mostly the Analytic Hierarchy1

Process (AHP) (see e.g. (Saaty, 1980, 1990)). In the paper (Ž. Turkalj et al., 2016), the2

AHP method and adaptive Mahalanobis clustering are combined (Morales-Esteban et al.,3

2014).4

This paper is organized as follows. The problem is stated and one practical problem5

of ranking internal research projects at the University of Osijek is discussed in Section 2.6

The definition of ordering on a set of projects in terms of various distance functions is also7

introduced. An example indicating the basic problems that might occur is constructed.8

In Section 3, an analysis of various distance functions, i.e. the Manhattan d1-distance,9

the Euclidean d2-distance, and the Chebyshev d∞-distance, is performed. The situation10

when two or more projects are evaluated differently by various reviewers, and yet roughly11

equally ranked by using some distance function, is especially considered. In that case, we12

believe priority should be given to projects with more balanced assessments, which can13

be achieved by combining different distance functions.14

The real ranking problem of internal research projects at the University of Osijek is15

described in Section 4, and finally, some conclusions are given in Section 5.16

2 Problem statement17

Let P = {π(1), . . . , π(m)} be a set of projects. Suppose that each project is assessed by18

n ≥ 1 independent reviewers based on the review form in which k ≥ 1 features f1, . . . , fk19

(e.g. the quality and relevance of a research proposal, the quality of applicants, etc.; see20

Example 1) are assessed. The corresponding weight wj > 0 will be associated to each21

of k features fj which will be assessed. This can be done by using the AHP method22

(see Saaty (1980, 1990)). Without loss of generality, let us suppose that
k∑

s=1
ws = 1. By23

r
(i)
j1 , . . . , r

(i)
jk ∈ [1, 5] we denote grades of features f1, . . . , fk given for the project π(i) ∈ P24

by the j-th reviewer.25

Furthermore, let26

r
(i)
j =

k∑
s=1

wsr
(i)
js , j = 1, . . . , n, i = 1, . . . ,m, (1)27

be the average weighted grade (AWG) of the project π(i) obtained from the j-th reviewer.28

In this way, we are able to associate a vector (point)29

a(i) = (r(i)
1 , . . . , r(i)

n ) ∈ Rn, i = 1, . . . ,m, (2)30

from n-dimensional vector space Rn to each project π(i) ∈ P . So we have established a31

bijection between the set of all projects P and the set A = {a(i) ∈ Rn : i = 1, . . . ,m} of32

points in the space Rn.33
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Example 1. In 2015, the University of Osijek announced an internal call for proposals1

for research projects INGI-20152 to encourage cooperation between its researchers and2

prominent researchers from other (especially foreign) universities. 30 candidates from the3

STEM area and 10 Social Sciences and Humanities candidates submitted their applications4

to the call. The evaluation was carried out based on reviews by independent reviewers,5

one of whom is affiliated with the field of the research proposal in question and the other6

comes from a different, but related field. Reviewers evaluated features f1, . . . , f6 (given7

in Table 1) with grades from the interval [1, 5]. The Committee for Research Project8

Evaluation defined weights w1, . . . , w6 > 0 of particular features by using the AHP method9

(see also Table 1). In that way, for each of m = 40 projects π(i) the corresponding vector10

a(i) ∈ R2 is uniquely determined, whose components are AWGs of all features of the first11

and the second reviewer12

a(i) = (r(i)
1 , r

(i)
2 ) ∈ R2, i = 1, . . . ,m. (3)13

Features Weights wi

f1: The quality and relevance of the
research proposal

0.25

f2: The quality of applicants 0.15
f3: The quality of guest researchers 0.35
f4: Research feasibility study 0.10
f5: Financial plan 0.10
f6: Inclusion of students 0.05

Table 1: Elements assessed by reviewers from Example 1 with corresponding weights

14

Furthermore, by π⋆ we will denote a perfectly assessed project to which the point15

a⋆ = (5, . . . , 5) ∈ Rn is associated in space Rn. The project π(i) is considered to be ranked16

better than the project π(j) if the point a(i) is closer to the point a⋆ in terms of some17

distance function. In this sense, we introduce the following definition.18

Definition 1. Let P = {π(1), . . . , π(m)} be a set of projects, A ⊂ Rn a set of corresponding19

points defined by (2), π⋆ the perfectly assessed project to which we associate the point20

a⋆ = (5, . . . , 5) ∈ Rn, and let d : Rn × Rn → R+ be some distance function. The project21

π(i) is said to be better d-ranked than the project π(j) and we write π(i)
(d)
≽ π(j) if and only22

if there holds d(a(i), a⋆) ≤ d(a(j), a⋆), i.e.,23

π(i)
(d)
≽ π(j) ⇔ d(a(i), a⋆) ≤ d(a(j), a⋆).24

Furthermore, we say that a set of projects P is d-ranked if π(1)
(d)
≽ · · ·

(d)
≽ π(j)

(d)
≽ · · ·

(d)
≽ π(m)

25

and j is a d-rank of the project π(j).26

2See: http://www.unios.hr/ingi2015/
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Let K(d)
r = {x ∈ Rn : d(x, a⋆) ≤ r} be a hyperball of radius r > 0 with the center in1

the point a⋆ in metric space Rn with distance function d : Rn ×Rn → R+. Obviously, π(i)
2

is strongly better d-ranked than π(j) (π(i) (d)
≻ π(j)) if the point a(i) is situated in hyperball3

K(d)
r of smaller radius. Projects π(i) and π(j) are equally d-ranked if the corresponding4

points a(i) and a(j) lie in the same hypercircle ∂K(d)
r . In this way, we introduce complete5

ordering on the set of points A and a unique ranking list of projects P .6

The proposed method of project ranking allows the application of various distance7

functions, and in this paper we will particularly analyze the application of the Manhattan8

d1-distance function, the Euclidean d2-distance function, and the Chebyshev d∞-distance9

function.10

Remark 1. Note that two projects π(i), π(j) ∈ P (see Fig. 1)11

• have the same d1-rank if d1(a(i), a⋆) = d1(a(j), a⋆), i.e., if the arithmetic means of12

their grades are equal: 1
n

n∑
s=1

r(i)
s = 1

n

n∑
s=1

r(j)
s ;13

• have the same d2-rank if d2(a(i), a⋆) = d2(a(j), a⋆);14

• have the same d∞-rank if d∞(a(i), a⋆) = d∞(a(j), a⋆), i.e., if the highest grades ob-15

tained for some feature are equal: max
s=1,...,n

r(i)
s = max

s=1,...,n
r(j)

s .16

Example 2. Let m = 7 and n = 2. Average grades awarded to projects by two independent17

reviewers are given in Table 2. In this way, the set A = {a(i) = (xi, yi) ∈ R2 : i = 1, . . . , 7}18

of the corresponding points is determined. The table also gives distances of each project to19

the perfectly assessed project π⋆ by using d1, d2 and d∞ distance functions. In addition to20

the set of points A, a few d1-circles suggesting a d1-rank of projects are shown in Fig. 1a.21

Similarly, Fig. 1b and Fig. 1c contain a few d2-circles and a few d∞-circles suggesting a22

d2-rank of projects and a d∞-rank of projects, respectively.23

Project π(1) π(2) π(3) π(4) π(5) π(6) π(7)

Rev#1 (xi) 3.0 2.0 3.4 4.1 4.2 4.9 4.4
Rev#2 (yi) 2.8 4.5 4.1 3.4 4.6 3.9 4.4

d1(π(i), a⋆) 4.2 3.5 2.5 2.5 1.2 1.2 1.2
d2(π(i), a⋆) 3.0 3.0 1.8 1.8 0.9 1.1 0.8
d∞(π(i), a⋆) 2.2 3.0 1.6 1.6 0.8 1.1 0.6

Table 2: Project grades and distances to the perfectly assessed project π⋆

Table 3 gives d1, d2, and d∞ ranking lists of projects from Example 2. Note that24

projects π(3), π(4), i.e. projects π(5), π(6), π(7), lie in the same d1-circle and have the same25

d1-rank. Similarly, projects π(1), π(2), i.e. projects π(3), π(4), lie in the same d2-circle and26

have the same d2-rank. A similar problem also occurs in the application of the d∞-distance.27

These problems will be analyzed in detail in the next section.28
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(a) Manhattan d1-distance

a⋆

(b) Euclidean d2-distance

a⋆

(c) Chebyshev d∞-distance

a⋆

Figure 1: Distances to the perfectly assessed project π⋆ represented by the point a⋆ = (5, 5)

Rank Manhattan Euclidean Chebyshev
d1-distance d2-distance d∞-distance

1 π(5), π(6), π(7) π(7) π(7)

2 π(3), π(4) π(5) π(5)

3 π(2) π(6) π(6)

4 π(1) π(3), π(4) π(3), π(4)

5 – π(1), π(2) π(1)

6 – – π(2)

7 – – –

Table 3: Ranking of projects from Example 2 by using various distance functions

3 Comparison of the application of various metric1

functions2

As already mentioned in the previous section, two projects will be equally d1-ranked3

if the arithmetic means of their grades (2) are equal. It is immediately clear that if4

the Manhattan d1-distance function is applied, the rank of some project π ∈ P will be5

influenced only by arithmetic means of grades (2), and diversity of individual grades (2)6

awarded by various reviewers will not affect the d1-rank of the project at all.7

Unlike the d1-rank, the d2-rank and the d∞-rank will depend on grade dispersion (2)8

referring to the project under consideration.9

As an illustration, let us consider two projects represented by the points a and a0 from10

the plane R2 (see Fig. 2), which are equally d1-ranked, i.e., they equally differ from a⋆ by11

the Manhattan distance: d1(a0, a⋆) = d1(a, a⋆) =: r. In Fig. 2, it can be seen that the12

point a0 ∈ R2 represents the project π0 ∈ P , whose AWGs obtained from both reviewers13

are mutually equal. Among all projects π ∈ P for which d1(a, a⋆) = r, the project π0
14

attains the best d2-rank (see Fig. 2a) and the best d∞-rank (see Fig. 2b).15

This means that the application of d2 and d∞ distances prefers uniform evaluation16

grades, unlike the Manhattan distance that takes into consideration only the arithmetic17

means of AWGs obtained from all reviewers. Practically, in case we have projects that18

are evaluated similarly and we want to give priority to the project with more uniform19
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(a) π0(a0) attains the best d2-rank

a⋆

∂K
(1)
r

a0 ϵ1

ϵ2

a

(b) π0(a0) attains the best d∞-rank

a⋆

∂K
(1)
r

a0 ϵ1

ϵ2

a

Figure 2: dp, p ≥ 2 distances prefer uniform evaluation grades

evaluation grades, we should use either the d2 or the d∞ distance, and if we do not want1

to give priority to such project, we should use the Manhattan distance.2

A generalized principle for the case of n > 1 reviewers is described in the following3

theorem.4

Theorem 1. Let n > 1 and let ∂K(1)
r = {x ∈ Rn

+ : d1(x, a⋆) = r, r > 0} be part of the5

Manhattan hypercircle of radius r > 0 with the center at the point a⋆. Then the shortest6

dp, p ∈ {2,∞}, distance from the point a⋆ to the hypercircle ∂K(1)
r is attained at the point7

a0 = (r, . . . , r) ∈ ∂K(1)
r , i.e.,8

dp(∂K(1)
r , a⋆) = min

a∈∂K
(1)
r

dp(a, a⋆) = dp(a0, a⋆), p ∈ {2,∞}. (4)9

Proof. First, let us note that for all a ∈ ∂K(1)
r there is ϵ ∈ Rn, such that10

a = a0 + ϵ = (r + ϵ1, . . . , r + ϵn), where
n∑

i=1
ϵi = 0. (5)11

In order to prove the assertion for p = 2, let us suppose that r ∈ R+ is fixed, define12

the function13

φ : Rn → R+, φ(ϵ) = d2
2(a, a⋆) = (5 − r − ϵ1)2 + · · · + (5 − r − ϵn)2,14

and consider the following constrained optimization problem:15

min
{(ϵ1,...,ϵn)∈Rn:

∑n

i=1 ϵi=0}
φ(ϵ1, . . . , ϵn). (6)16

The corresponding Lagrange function for problem (6) is17

L(ϵ1, . . . , ϵn, λ) = (5 − r − ϵ1)2 + · · · + (5 − r − ϵn)2 + λ
n∑

i=1
ϵi.18

From ∂L(ϵ1,...,ϵn)
∂ϵi

= λ − 2(5 − ϵi − r) = 0, we obtain ϵi = 1
2(10 − λ − 2r), i = 1, . . . , n.19

Finally, because ∑n
i=1 ϵi = 0, we obtain λ = 10 − 2r, i.e. ϵi = 0, i = 1, . . . , n. Since the20

function φ is a strongly convex (quadratic) function, the assertion is proved.21
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In order to prove the assertion for p = ∞, let us define the function1

ψ : Rn → R, ψ(ε) = d∞(aε, a
⋆) = max{|5 − r − ε1|, . . . , |5 − r − εn|}2

and consider the following constrained optimization problem:3

min
{(ε1,...,εn)∈Rn :

∑n

i=1 εi=0}
ψ(ε1, . . . , εn), (7)4

Let z = max{|5 − r − ε1|, . . . , |5 − r − εn|}. Problem (7) is reduced to a linear5

programming problem:6

z → min7

s.t.
n∑

i=1
εi = 0, (8)8

5 − r − εi ≤ z, i = 1, . . . , n, (9)9

−5 + r + εi ≤ z, i = 1, . . . , n, (10)10

εi ∈ R+. (11)11
12

This problem can be solved explicitly. By summing conditions (9) and using (8) we get13

5 − r ≤ z. Analogously, by summing conditions (10) and using (8) we obtain −5 + r ≤ z,14

and finally, |5 − r| = max{5 − r,−5 + r} ≤ z. Since z can be minimal, it is obvious that15

the optimal z⋆ = |5 − r| = ψ(0, . . . , 0).16

Let us now consider the set of projects P0 ⊆ P which are equally d2-ranked. As can17

be seen in Fig. 3a, the Chebyshev d∞ distance project π0 ∈ P0 with uniform evaluation18

grades a0 = (r, r) is recognized as best since d∞(a0, a⋆) ≤ d∞(a, a⋆), for all a ∈ P0. At19

the same time, the project π0 ∈ P0 is d1-ranked worst, and the corresponding vector a0
20

has the smallest ℓ2-norm (see Fig. 3b).21

(a) d∞(a0, a⋆) < d∞(a, a⋆)

a⋆

a0

a

(b) ∥a(i)∥p = ∥a(j)∥p, p = 1, 2

a⋆

a0

a

Figure 3: Two projects equally d2-ranked

The following theorem gives a generalization of the aforementioned claims for n > 122

and shows that among all projects π ∈ P0, the highest d∞-rank is attributed to the23

project π0 ∈ P0 with uniform evaluation grades a0 = (r, . . . , r). At the same time, the24

project π0 ∈ P0 has the lowest d1-rank, and the corresponding vector a0 has the smallest25

ℓ2-norm.26
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Theorem 2. Let n > 1 and let ∂K(2)
r = {x ∈ Rn

+ : d2(x, a⋆) = r, r > 0} be part of the1

Euclidean hypercircle of radius r > 0 with the center in the point a⋆.2

(i) The shortest d∞ distance from the point a⋆ to the hypercircle ∂K(2)
r is attained at3

the point a0 = (r, . . . , r) ∈ ∂K(2)
r , i.e.,4

d∞(∂K(2)
r , a⋆) = min

a∈∂K
(2)
r

d∞(a, a⋆) = d∞(a0, a⋆). (12)5

(ii) For all pairs a(i), a(j) ∈ ∂K(2)
r , there holds6

d1(a(i), a⋆) ≥ d1(a(j), a⋆) ⇔ ∥a(i)∥2 ≤ ∥a(j)∥2, (13)7

and particularly, the greatest d1-distance from the point a⋆ to the hypercircle ∂K(2)
r8

is attained at the point a0 = (r, . . . , r) ∈ ∂K(2)
r , i.e.,9

d1(∂K(2)
r , a⋆) = max

a∈∂K
(2)
r

d1(a, a⋆) = d1(a0, a⋆). (14)10

Proof. First, let us note that for all a ∈ ∂K(2)
r there exists ϵ ∈ Rn, such that11

a = a0 + ϵ = (r + ϵ1, . . . , r + ϵn), where
n∑

i=1
ϵi ≤ 0. (15)12

Namely, the points a, a0 ∈ ∂K(2)
r have the same distance from the point a⋆, and there13

holds14

(5 − r − ϵ1)2 + · · · + (5 − r − ϵn)2 = (5 − r)2 + · · · + (5 − r)2
15

⇒ ϵ2
1 + · · · + ϵ2

n + 2(5 − r)(ϵ1 + · · · + ϵn) = 016

⇒ ϵ1 + · · · + ϵn ≤ 0.17
18

Let us define the function19

ψ : Rn → R, ψ(ε) = d∞(aε, a
⋆) = max{|5 − r − ε1|, . . . , |5 − r − εn|}20

and consider the following constrained optimization problem21

min
{(ε1,...,εn)∈Rn :

∑n

i=1 εi≤0}
ψ(ε1, . . . , εn). (16)22

Let z = max{|5 − r − ε1|, . . . , |5 − r − εn|}. Problem (16) is reduced to a linear23

programming problem24

z → min25

s.t.
n∑

i=1
εi ≤ 0, (17)26

5 − r − εi ≤ z, i = 1, . . . , n, (18)27

−5 + r + εi ≤ z, i = 1, . . . , n, (19)28

εi ∈ R. (20)29
30



9

This problem can be solved explicitly. By summing conditions (18) we get1

n(5 − r) −
n∑

i=1
εi ≤ nz,2

by summing conditions (19) we get3

n(−5 + r) +
n∑

i=1
εi ≤ nz,4

and finally,5

max{n(5 − r) −
n∑

i=1
εi, n(−5 + r) +

n∑
i=1

εi} ≤ nz.6

Obviously, the optimal z⋆ is7

z⋆ = 1
n

max{n(5 − r) −
n∑

i=1
εi, n(−5 + r) +

n∑
i=1

εi}8

= 1
n

|n(5 − r) −
n∑

i=1
εi| = 1

n

(
n(5 − r) −

n∑
i=1

εi

)
9

≥ 1
n
n(5 − r) = |5 − r| = ψ(0).10

11

In order to prove assertion (ii), let us suppose that a(i), a(j) ∈ ∂K(2)
r are arbitrary.12

Then there holds13

d2(a(i), a⋆) = d2(a(j), a⋆) ⇔ ∥a(i) − a⋆∥2
2 = ∥a(j) − a⋆∥2

214

⇔
(
a(j) − a(i)

)
(a⋆)T = 1

2
(
∥a(j)∥2 − ∥a(i)∥2

)
15

⇔ 5
(

n∑
s=1

r(j)
s −

n∑
s=1

r(i)
s

)
= 1

2
(
∥a(j)∥2 − ∥a(i)∥2

)
16

⇔ 5
(
d1(a(j), a⋆) − d1(a(i), a⋆)

)
= 1

2
(
∥a(i)∥2

2 − ∥a(j)∥2
2

)
. (21)17

18

From (21) it can be seen that ∥a(i)∥2 ≥ ∥a(j)∥2, if and only if d1(a(j), a⋆) ≥ d1(a(i), a⋆),19

from where there follow (13) and (14).20

Remark 2. A generalization of results from Theorem 1 and Theorem 2 could be written for21

an arbitrary dp (p ≥ 1) distance, but the proof would require us to solve a nondifferentiable22

optimization problem (see e.g. Avriel (2003); Ruszczynski (2006)). It should also be noted23

that the cases d1, d2, d∞ are quite sufficient for the applications in question.24

4 Ranking internal research projects at the Univer-25

sity of Osijek26

As an illustration, we consider the problem of ranking projects of the internal research27

program at the University of Osijek (INGI-2015) described in Example 1. We will analyze28
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only the problem of ranking m = 10 Social Sciences and Humanities project proposals.1

The AWGs from two independent reviewers are shown in Table 4 and in Fig. 4.2

The Committee for Research Project Evaluation decided to apply the Euclidean d2-3

distance with corrections by the Chebyshev d∞-distance in terms of Theorem 1 and The-4

orem 2, i.e., if two projects are approximately equally d2-ranked, then we give priority to5

the project with more uniform evaluation grades, i.e. to the project that is d∞-ranked6

better.7

a⋆

Figure 4: Ranks of m = 10 Social Sciences and Humanities projects

Note that projects INGI-1 and INGI-2 are equally d2-ranked, but the project INGI-1 is8

d∞-ranked better (has more uniform evaluation grades), hence it ranks first. If we tried9

to differentiate projects INGI-1 and INGI-2 by using more decimals in the d2-rank, then10

the project INGI-2 would be placed before the project INGI-1. A similar situation takes11

place with projects INGI-3 and INGI-4.12

No. Code Rev#1 Rev#2 d2-distance d∞-distance

1 INGI-1 4.7 4.7 0.4 0.3
2 INGI-2 4.9 4.6 0.4 0.4
3 INGI-3 4.6 4.6 0.6 0.4
4 INGI-4 4.6 4.5 0.6 0.5
5 INGI-5 4.7 4.4 0.7 0.6
6 INGI-6 4.8 4.2 0.8 0.8
7 INGI-7 4.7 4.0 1.0 1.0
8 INGI-8 4.2 4.3 1.1 0.8
9 INGI-9 4.9 3.5 1.5 1.5

10 INGI-10 2.4 3.7 2.9 2.6

Table 4: Ranking of Social Sciences and Humanities projects

5 Conclusions13

Project ranking is a sensitive issue in multi-criteria decision making. During the evaluation14

process, it can be expected that two or more projects are roughly equally ranked in15

relation to the selected distance function. We believe that it is not appropriate to rank16

such projects by using more decimal places, but that the project with more uniform17
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evaluation grades should be positioned better. The paper shows how this can be achieved1

by combining different distance functions.2

The presented method can be applied to other different situations like department3

ranking inside a university, ranking teachers and associates on the basis of a university4

survey or on the basis of the quality of scientific research, ranking administrative staff on5

the basis of a survey, etc.6
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